Fractions tell how many parts of a whole we have. We have a top number, the numerator, and a bottom number, the denominator. For example, 1/2 is a fraction. Well, if we picture a pizza, the bottom number tells us how many slices to slice the pizza, and the top number tells us how many of those slices we can have. So 1/2 tells us that we have sliced our pizza into two slices, and we can take 1 of those slices.

Quantitative Aptitude

Fractions-Exercise Questions

|   52298

1. 20.05 + 35.603- …… =43.087

a. 10.263

b. 12.566

c. 15.426

d. 13.286

 

2. Which of the following fraction is smallest?

a. 23

28

b.  14

     15

c.    15

 19

d.   21

      24

 

3. 0.585858 is equivalent to the fraction….

a. 58

   100   

b.  58

    99

c. 85

   100

d. 85

    99

 

4. The value of is

a. 47

   198

b. 3 4/198

c.48

   98

d. 58

    36

 

5. 0.9*0.007=  ­­­­­­­­­­_________

a. 0.063

b. 0.0063

c.0.63

d. 0.00063

 

6. 0.0015÷ ? = 0.003

a. 0.05

b. 0.005

c. 0.5

d. 5

 

7. 0.363*0.522+0.363*0.478 = ?

a.0.522

b. 0.845

c. 0.363

d. 0.985

 

8. If 7125¸1.25= 5700< the value of 712.5÷12.5 is:

a. 5.7

b. 57

c. 570

d. .57

 

9. The value of 34.31*0.473*1.567 is close to

                      0.0673*23.25*7.57

a. 2.0

b. 1.15

c. 2.05

d. 2.15

 

10. Evaluate (5.68)2 – (4.32)2

                     5.68- 4.32

a. 8

b. 9

c. 10

d. 12

 

11. Evaluate 4.3*4.3*4.3+1

                   4.3*4.3-4.3+1            

a. 14.3

b. 52.3

c. 5.3

d. 42.3

 

12. If 5= 2.24, then the value of     55       is

                                                  45-.96  

a. 14

b. 15.2

c. 13.4

d. 14.5

 

13. If 5.51*10k = 0.0551, then the value of k is:

a. –4

b. –3

c. –2

d. –1               

 

14. 25.25 is equal to:

      2000

a. 1.012526

b. 0.012625

c. 0.12526

d. 0.12625

 

15. The value of (2.502+0.064)2 - (2.502-0.064)2

                                      2.502*0.064

a. .25

b. .235

c. 4

d. 3

       

16. The value of 4.5*1.8+4.5*8.2

                       1.5*4.5+1.5*5.5    

a. 10

b. 8

c. 5

d. 3

 

17. The value of (.02)2 + (0.52)2 + (0.035)2

                          (0.002)2 + (0.052)2 + (0.0035)2

a. 100

b. 1000

c. .001

d. .0001

 

18. Out of 200 donors, ¼  are men and remaining are women. Each male donor donates Rs.3000 per year and each female donor donates ½ of that amount. What is the total yearly collection through donations?

a. Rs.1, 50,000

b. Rs.3, 75,000

c. Rs.1, 40,300

d. Rs.2, 25,000

 

19. One-fifth of Ramu’s expenditure is equal to one-half of his savings. If his monthly income is Rs.6300 how much amount does he save?

a. Rs.1550

b. Rs.1800

c. Rs.2000

d. Rs.2350

 

20. The width of a rectangular hall is ½ of its length. If the area of the hall is 450 sq.m, what is the difference between its length and breadth?

a. 8m

b. 10m

c. 12m

d. 15m

 

Answer & Explanations

 

1. Exp: 20.05 + 35.603- 43.087 = 55.653- 43.087= 12.566

2. Exp: 23 =0.821

          28

    14 = 0.933

    15

    15 = 0.7894

    19

   21  = 0.875

   24

   So, 15 = 0.7894 is smallest.

        19

3. Exp: 0.585858=  = 58

                                      99

4. Exp: = 3+ = 3+236-1 = 3 47/198

                                            990

5. Exp: 9*7=63

   Sum of decimal places= 4

   So, 0.9*0.007=  0.0063

6. Exp: Let 0.0015 = 0.003

                   X

    X= 0.0015 = 0.5

           0.003

7. Exp: Given Expression= 0.363*(0.522+0.478)= 0.363*1= 0.363

8. Exp: Given 7125  = 5700
                    1.25

    712.5 =71.25 = 7125*1  = 5700 = 57

    12.5       1.25     1.25*100   100

9. Exp: 34.31*0.473*1.567 = 25.4303 = 2.15

            0.0673*23.25*7.57      11.845

10. Exp. Given Expression = a2-b2 = (a+b) (a-b) = (a+b)

                                        a-b           a-b 

      (5.68)2 – (4.32)2 =   (5.68+ 4.32) = 10

             5.68- 4.32

11. Exp: Given Expression = a3+b3      =(a+b)              

                                      a2-ab+b2

 

                                           = (4.3+1)= 5.3

12. Exp: 55       = 5*2.24          = 11.2       =11.2 = 14

            45-.96     4*2.24-.96      8.96-.96        8

13. Exp: 10k = 0.0551 = 5.51  = 5.51* 102 = 1 = 10-2

                        5.51       551      551* 102    102

14. Exp: 25.25 = 2525 = 0.012625

              2000    200000

15. Exp: (2.502+0.064)2 - (2.502-0.064)2  = (a+b)2 - (a-b)2  = 4ab  = 4

                        2.502*0.064                              ab              ab

16. Exp: 4.5*1.8+4.5*8.2 = 4.5 (1.8+8.2) = 4.5*10 = 45 =3

              1.5*4.5+1.5*5.5     1.5 (4.5+5.5)  1.5*10  15

17. Exp: (.02)2 + (0.52)2 + (0.035)2 =          a2+b2+c2

       (0.002)2 + (0.052)2 + (0.0035)2     ( a /10) 2+ ( b/10) 2 + ( c/10) 2  ,

                                                            

      where a= .02, b= .52, c= .035

                                                    = 100(a2+b2+c2) = 100

                                                           a2+b2+c2

18. Exp: Number of men donors= 200*1/4 =50

     Number of women donors=200-50=150

     1 man donor donates = Rs.3000

     Therefore,  50 men donor donates = 3000* 50= Rs.1,50,000

     1 woman donor donates= 3000*1/2 = Rs.1500

     Therefore, 150 women donor donates = 1500* 150= Rs.2,25,000

     Hence total amount collected = 1,50,000+ 2,25,000

                                                   = Rs.3,75,000

19.  Let the saving be Rs. x

      Therefore, Expenditure = Rs. (6300-x)

      then, (6300-x)* 1 = x* 1

                            5         2

     => 1260- x = x

                   5    2

    => 1260= x + x

                            2      5  

    => 7x = 1260

         10

     x= 1800

20. Exp: Let the length of the hall be x m

     Breadth of the hall = 1x  m

                                   2

     Area of the hall = Length * Breadth

                  450  = x * 1x

                                   2

                    x²   = 900

                      x  =30

     Difference between the length and breadth of the hall = x - 1x  = x/2

                                                                                        2

      30 = 15m

       2

Fractions tell how many parts of a whole we have. We have a top number, the numerator, and a bottom number, the denominator. For example, 1/2 is a fraction. Well, if we picture a pizza, the bottom number tells us how many slices to slice the pizza, and the top number tells us how many of those slices we can have. So 1/2 tells us that we have sliced our pizza into two slices, and we can take 1 of those slices. Freshersworld provides candidates with the aptitude test, Formulas, tips, tricks and shortcuts methods to solve the problems related to Fractions. Freshersworld provides fraction questions and answers for bank exams and other competitive exams. Free fractions Online test, Multiple choice questions are provided by freshersworld with answers. What is equivalent fractions with example? Equivalent fractions are different fractions that name the same number. Example: 2/3, 6/9, and 8/12 are equivalent fractions, since the numerator and denominator of each fraction was multiplied by the same nonzero number. What is a unit fraction? A fraction where the numerator is 1. Example: ¼
feedback