Answer is givenon photo below

asked 2021-05-13

Find a basis for the eigenspace corresponding to the eigenvalue of A given below.

\(A=\begin{bmatrix}4 & 0&2&0 \\4 & 2&10&0\\3&-4&17&0\\2&-2&8&3 \end{bmatrix} , \lambda=3\)

\(A=\begin{bmatrix}4 & 0&2&0 \\4 & 2&10&0\\3&-4&17&0\\2&-2&8&3 \end{bmatrix} , \lambda=3\)

asked 2021-06-09

Use the table of values of \(f(x, y)\) to estimate the values of \(fx(3, 2)\), \(fx(3, 2.2)\), and \(fxy(3, 2)\).

\(\begin{array}{|c|c|}\hline y & 1.8 & 2.0 & 2.2 \\ \hline x & & & \\ \hline 2.5 & 12.5 & 10.2 & 9.3 \\ \hline 3.0 & 18.1 & 17.5 & 15.9 \\ \hline 3.5 & 20.0 & 22.4 & 26.1 \\ \hline \end{array}\)

\(\begin{array}{|c|c|}\hline y & 1.8 & 2.0 & 2.2 \\ \hline x & & & \\ \hline 2.5 & 12.5 & 10.2 & 9.3 \\ \hline 3.0 & 18.1 & 17.5 & 15.9 \\ \hline 3.5 & 20.0 & 22.4 & 26.1 \\ \hline \end{array}\)

asked 2021-09-01

A basis for the set of vectors in \(\displaystyle\mathbb{R}^{3}\) in the plane \(x−6y+9z=0\)

asked 2021-06-09

Determine whether the given vectors are orthogonal, parallel,or neither:

\(u=(-3,\ 9,\ 6)\)

\(v=(4,\ -12,\ -8)\)

\(u=(-3,\ 9,\ 6)\)

\(v=(4,\ -12,\ -8)\)

asked 2021-11-21

\(
A=\begin{bmatrix}5&0\\2&1\end{bmatrix},\lambda=1,5\)

asked 2021-11-30

For problems 1 the area of the region below the parameric curve given by the set of parametric equations. For each problem you may assume that each curve traces out exactly once from right to left for the given range of t. For these problems you should only use the given parametric equations to determine the answer.

1) \(\displaystyle{x}={t}^{{{2}}}+{5}{t}-{1}\)

\(\displaystyle{y}={40}-{t}^{{{2}}}\)

\(\displaystyle-{2}\le{t}\le{5}\)

1) \(\displaystyle{x}={t}^{{{2}}}+{5}{t}-{1}\)

\(\displaystyle{y}={40}-{t}^{{{2}}}\)

\(\displaystyle-{2}\le{t}\le{5}\)

asked 2021-10-29

If the tangent line to y = f(x) at (4, 3) passes through the point (0, 2), find f(4) and f’(4)