1. If m and n are whole numbers such that mn = 169, then the value of (m – 1) n + 1 is:
a. 1
b. 13
c. 169
d. 1728
2. The simplified form of x9/2 . √y7 is:
x7/2 . √y3
a. x2/y2
b. x2 . y2
c. xy
d. x2/y
3. If √(3 + ³√x) = 2, then x is equal to :
a. 1
b. 2
c. 4
d. 8
4. If x is an integer, find the minimum value of x such that 0.00001154111 x 10x exceeds 1000.
a. 8
b. 1
c. 7
d. 6
5. Which among the following is the greatest?
a. 23^2
b. 22^3
c. 32^3
d. 33^3
6. Solve for m if 49(7m) = 3433m + 6
a. -8/6
b. -2
c. -4/6
d. -1
7. Solve for 2y^√2^2 = 729.
a. ±3
b. ±1
c. ±2
d. ±4
8. √[200√[200√[200……..∞]]] = ?
a. 200
b. 10
c. 1
d. 20
9. If a and b are positive numbers, 2a = b3 and ba = 8, find the value of a and b.
a. a = 2, b = 3
b. a = 3, b = 2
c. a = b = 3
d. a = b = 2
10. If 44m + 2 = 86m – 4, solve for m.
a. 7/4
b. 2
c. 4
d. 1
11. If 2x x 162/5 = 21/5, then x is equal to:
a. 2/5
b. -2/5
c. 7/5
d. -7/5
12. If ax = by = cz and b2 = ac, then y equals :
a. xz/x + z
b. xz/2(x + z)
c. xz/2(x – z)
d. 2xz/(x + z)
13. If 7a = 16807, then the value of 7(a – 3) is:
a. 49
b. 343
c. 2401
d. 10807
14. If 3x – 3x – 1 = 18, then the value of xx is:
a. 3
b. 8
c. 27
d. 216
15. If 2(x – y) = 8 and 2(x + y) = 32, then x is equal to:
a. 0
b. 2
c. 4
d. 6
16. If ax = b, by = c and cz = a, then the value of xyz is:
a. 0
b. 1
c. 1/abc
d. abc
17. 125 x 125 x 125 x 125 x 125 = 5?
a. 5
b. 3
c. 15
d. 2
18. If 52n – 1 = 1/(125n – 3),then the value of n is:
a. 3
b. 2
c. 0
d. -2
19. If x = 5 + 2√6, then (x – 1) is equal to:
√x
a. √2
b. 2√2
c. √3
d. 2√3
20. Number of prime factors in 612 x (35)28 x (15)16 is :
(14)12 x (21)11
a. 56
b. 66
c. 112
d. None of these
Answer & Explanations
1. Exp: Clearly, m = 13 and n = 2.
Therefore, (m – 1) n + 1 = (13 – 1)3 = 12³ = 1728.
2. Exp: x9/2 . √y5 is: = x(9/2 – 5/2) . y(7/2 – 3/2) = x2. y2
x7/2 . √y3
3. Exp: On squaring both sides, we get:
3 + ³√x = 4 or ³√x = 1.
Cubing both sides, we get x = (1 x 1 x 1) = 1
4. Exp: Considering from the left if the decimal point is shifted by 8 places to the right, the number
becomes 1154.111. Therefore, 0.00001154111 x 10x exceeds 1000 when x has a minimum value of
8.
5. Exp: 23^2 = 29
22^3 = 28
32^3 = 38
33^3 = 327
As 327 > 38, 29 > 28 and 327 > 29. Hence 327 is the greatest among the four.
6. Exp: 49(7m) = 3433m + 6 Þ 727m Þ (73)3m + 6 Þ 72 + m = 79m + 18
Equating powers of 7 on both sides,
m + 2 = 9m + 18
-16 = 8m Þ m = -2.
7. Exp: 3y^√2^2 = 729
3y^2 = 34 (√22 = (21/2)2 = 2)
equating powers of 2 on both sides,
y2 = 4 Þ y = ±2
8. Exp: Let √[200√[200√[200……..∞]]] = x ; Hence √200x = x
Squaring both sides 200x = x² Þ x (x – 200) = 0
Þ x = 0 or x – 200 = 0 i.e. x = 200
As x cannot be 0, x = 200.
9. Exp: 2a = b3 ….(1)
ba = 8 …..(2)
cubing both sides of equation (2),(ba)3 = 83
b3a = (b3)a = 512.
from (1),(2a)a = (23)3.
comparing both sides, a = 3
substituting a in (1),b =2.
10. Exp: 44m + 2 = (23)6m – 4 => 44m + 2 = 218m – 12
Equating powers of 2 both sides,
4m + 2 = 18m – 12 => 14 = 14m => m = 1.
11. Exp: 2x x 162/5 = 21/5
=> 2x x (24)2/5 = 21/5 => 2x x 28/5 = 21/5.
=> 2(x + 8/5) = 21/5
=> x + 8/5 = 1/5 => x = (1/5 – 8/5) = -7/5.
12. Exp: Let ax = by = cz = k. Then, a = k1/x, b = k1/y, c = k1/z.
Therefore, b² = ac => (k1/y)2 = k1/x x k1/z => k2/y = k(1/x + 1/z)
Therefore, 2/y = (x + z)/xz => y/2 = xz/(x + z) => y = 2xz/(x + z).
13. Exp: 7a = 16807, => 7a = 75, a = 5.
Therefore, 7(a – 3) = 7(5 – 3) = 7² = 49.
14. Exp: 3x – 3x – 1 = 18 => 3x – 1 (3 – 1) = 18 => 3x – 1 = 9 = 3² => x – 1 = 2 => x = 3.
15. Exp: 2(x – y) = 8 = 2³ => x – y = 3 ---(1)
2(x + y) = 32 = 25 => x + y = 5 ---(2)
On solving (1) & (2),we get x= 4.
16. Exp: a1 = cz = (by)z = byz = (ax)yz = axyz. Therefore, xyz = 1.
17. Exp: 125 x 125 x 125 x 125 x 125 = (5³ x 5³ x 5³ x 5³ x 5³) = 5(3 + 3 + 3 + 3 + 3) = 515.
18. Exp: 52n – 1 = 1/(125n – 3) => 52n – 1 = 1/[(53)n – 3] = 1/[5(3n – 9)] = 5(9 – 3n).
=> 2n – 1 = 9 – 3n => 5n = 10 => n = 2.
19. Exp: x = 5 + 2√6 = 3 + 2 + 2√6 = (√3)² + (√2)² + 2 x √3 x √2 = (√3 + √2)²
Also, (x – 1) = 4 + 2√6 = 2(2 + √6) = 2√2 (√2 + √3).
Therefore, (x – 1) = 2√2 (√3 + √2) = 2√2.
√x (√3 + √2)
20. Exp: 612 x (35)28 x (15)16 = (2 x 3)12 x (5 x 7)28 x (3 x 5)16 =
(14)12 x (21)11 (2 x 7)12 x (3 x 7)11
= 212 x 312 x 528 x 728 x 316 x 516 = 2(12 – 12) x 3(12 + 16 – 11) x 5(28 + 16) x 7(28 – 12 – 11)
212 x 712 x 311 x 711
= 20 x 317 x 544 x 7-5 = 317 x 544
75
Number of prime factors = 17 + 44 + 5 = 66.